Timeseries
8 dÃ©cembre 2019
library(readxl)
NO2_by_states <- read_excel("C:/Users/FREELANCE/Desktop/Freelancer/Assignment Pedia/Scrape/data/scholar/Nouveau dossier/rerprojecthelp (1)/NO2 by states.xlsx")
View(NO2_by_states)
library(forecast)
library(timeSeries)
Loading required package: timeDate
Ts_NO2_by_states <- ts(NO2_by_states[,-c(1,2)],start=c(2000,1),end=c(2016,3),frequency=12)
autoplot(Ts_NO2_by_states, facets = FALSE)
Compared to other types of statistical data, the particularity of time series lies in the presence of an anterior relationship between times, which orders all the information. The dates of observations are often equidistant from each other: we have monthly, quarterly series, …,
[image: timeserie_files/figure-docx/unnamed-chunk-2-1.png]
autoplot(Ts_NO2_by_states, facets = TRUExw s)
[image:]
plot(hclust(dist(t(Ts_NO2_by_states))))
There are many statistical techniques available to divide a population into different classes or subgroups. One of these is the hierarchical upward classification (HAC). The aim is that individuals grouped within the same class (intra-class homogeneity) are as similar as possible while classes are as dissimilar as possible (inter-class heterogeneity).

The principle of the HFA is to bring individuals together according to a previously defined similarity criterion that will be expressed in the form of a distance matrix, expressing the distance between each individual taken two by two. Two identical observations will have a distance of zero. The more dissimilar the two observations are, the greater the distance will be. The CAH will then bring individuals together iteratively to produce a dendrogram or classification tree. Classification is bottom-up because it starts from individual observations; it is hierarchical because it produces increasingly large classes or groups, including subgroups within them. By cutting this tree at a certain chosen height, we will produce the desired partition.
[image: timeserie_files/figure-docx/unnamed-chunk-3-1.png]
decomp.plot <- function(x, main = NULL, ...)
{
 if(is.null(main))
 main <- paste("Decomposition of", x$type, "time series")
 plot(cbind(observed = x$random + if (x$type == "additive")
 x$trend + x$seasonal
 else x$trend * x$seasonal, trend = x$trend, seasonal = x$seasonal,
 random = x$random), main = main, ...)
}
for(i in 1:ncol(Ts_NO2_by_states)){
 decomp.plot(decompose(Ts_NO2_by_states[,i]),main=paste0("Decomposition of time series for ",colnames(Ts_NO2_by_states)[i]))
}
The components of a time series
1. the trend (fi,1≤i≤n) represents the long-term evolution of the studied quantity, and reflects the general aspect of the series. It is a monotonous function, which may contain, for example, polynomial or exponential components.
2. periodic variations (if,1≤i≤n) are linked to the rhythm imposed by the meteorological seasons (agricultural production, gas consumption,...), or by economic and social activities (holidays, holidays, balance, etc). Mathematically, these are the periodic functions, i. e. there is an integer p, called period this component is entirely determined by its first values s1,s2,...,sp

These two formulas imply that the periodic components constitute a vector space of dimension p. The first formula (but not the second) identifies a basis for real decomposition; in order not to incorporate a constant component into the trend and also into the periodic component, the sum of the seasonal factors must be zero
3. irregular/resident/noise fluctuations (ei,1≤i≤n) are variations of low intensity and short duration, and of a random nature (which means here, in a purely descriptive framework, that they are not fully explainable). Indeed, they are not clearly visible in the graphs because of their low intensity compared to the other components. They only appear clearly after the signal has been removed"; the question then will be: do they still contain signal, or is it really noise"?
4 Accidental variations of aberrant observations are isolated values of abnormally high or low for a short period of time. These sudden variations in the series are generally explainable. Most of the time, these accidents are included in the noise series (irregular fluctuations).
5. change points These are points where the series completely changes pace, for example trend. They are normally explicable, and require a separate analysis of the series, in pieces. The first two components constitute the signal, and the next two components constitute the noise. In the following analyses, we will focus on the first 3 components: (fi,1≤i≤n) the trend, (sj,1≤j≤p) the seasonal coefficients, (ei,1≤i≤n) the irregular/residual fluctuations. The first 2 components are part of the well-known regression method, the purpose of which is to obtain uncorrelated residues, called "white noise". In the event that ̧ does not succeed, one method that can improve predictions is to do a second regression using past residues to predict the last residues; this is called a "Autoregresive", and the simplest example is the AR model
[image: timeserie_files/figure-docx/unnamed-chunk-4-1.png][image: timeserie_files/figure-docx/unnamed-chunk-4-2.png][image: timeserie_files/figure-docx/unnamed-chunk-4-3.png][image: timeserie_files/figure-docx/unnamed-chunk-4-4.png][image: timeserie_files/figure-docx/unnamed-chunk-4-5.png][image: timeserie_files/figure-docx/unnamed-chunk-4-6.png][image: timeserie_files/figure-docx/unnamed-chunk-4-7.png][image: timeserie_files/figure-docx/unnamed-chunk-4-8.png]
library(forecast)
i<-1
ggseasonplot(Ts_NO2_by_states[,i], year.labels=FALSE,main=paste0("Seasonal Plot :",colnames(Ts_NO2_by_states)[i]))
[image: timeserie_files/figure-docx/unnamed-chunk-5-1.png]
i<-i+1
ggseasonplot(Ts_NO2_by_states[,i], year.labels=FALSE,main=paste0("Seasonal Plot :",colnames(Ts_NO2_by_states)[i]))
[image: timeserie_files/figure-docx/unnamed-chunk-5-2.png]
i<-i+1
ggseasonplot(Ts_NO2_by_states[,i], year.labels=FALSE,main=paste0("Seasonal Plot :",colnames(Ts_NO2_by_states)[i]))
[image: timeserie_files/figure-docx/unnamed-chunk-5-3.png]
i<-i+1
ggseasonplot(Ts_NO2_by_states[,i], year.labels=FALSE,main=paste0("Seasonal Plot :",colnames(Ts_NO2_by_states)[i]))
[image: timeserie_files/figure-docx/unnamed-chunk-5-4.png]
i<-i+1
ggseasonplot(Ts_NO2_by_states[,i], year.labels=FALSE,main=paste0("Seasonal Plot :",colnames(Ts_NO2_by_states)[i]))
[image: timeserie_files/figure-docx/unnamed-chunk-5-5.png]
i<-i+1
ggseasonplot(Ts_NO2_by_states[,i], year.labels=FALSE,main=paste0("Seasonal Plot :",colnames(Ts_NO2_by_states)[i]))
[image: timeserie_files/figure-docx/unnamed-chunk-5-6.png]
i<-i+1
ggseasonplot(Ts_NO2_by_states[,i], year.labels=FALSE,main=paste0("Seasonal Plot :",colnames(Ts_NO2_by_states)[i]))
[image: timeserie_files/figure-docx/unnamed-chunk-5-7.png]
i<-i+1
ggseasonplot(Ts_NO2_by_states[,i], year.labels=FALSE,main=paste0("Seasonal Plot :",colnames(Ts_NO2_by_states)[i]))
[image: timeserie_files/figure-docx/unnamed-chunk-5-8.png]
acf(Ts_NO2_by_states)
The Partial Autocorrelation function is used to calculate and graphically represent the correlation between observations in a time series. Partial autocorrelation is the correlation between observations in a time series that are not captured by smaller intervals. For example, the partial autocorrelation diagram is referred to as the partial autocorrelation function (PACF). Study the PACF to choose the terms to be included in an ARIMA model
[image: timeserie_files/figure-docx/unnamed-chunk-6-1.png][image: timeserie_files/figure-docx/unnamed-chunk-6-2.png][image: timeserie_files/figure-docx/unnamed-chunk-6-3.png][image: timeserie_files/figure-docx/unnamed-chunk-6-4.png]
plot(ma(Ts_NO2_by_states, order = 3), main = "Simple Moving Averages (k=3)", ylim = ylim)
[image: timeserie_files/figure-docx/unnamed-chunk-7-1.png]
plot(ma(Ts_NO2_by_states, order = 7), main = "Simple Moving Averages (k=7)", ylim = ylim)
[image: timeserie_files/figure-docx/unnamed-chunk-7-2.png]
plot(ma(Ts_NO2_by_states, order = 15), main = "Simple Moving Averages (k=15)", ylim = ylim)
[image: timeserie_files/figure-docx/unnamed-chunk-7-3.png]
simple exponential - models level
fit <- HoltWinters(Ts_NO2_by_states, beta=FALSE, gamma=FALSE)
double exponential - models level and trend
fit <- HoltWinters(Ts_NO2_by_states, gamma=FALSE)
triple exponential - models level, trend, and seasonal components
fit <- HoltWinters(Ts_NO2_by_states)

for(i in 1:ncol(Ts_NO2_by_states)){
 fit <- auto.arima(Ts_NO2_by_states[,i])
fit
}
the series is not stationary
library(tseries)
kpss.test(Ts_NO2_by_states[,1])
Warning in kpss.test(Ts_NO2_by_states[, 1]): p-value smaller than printed
p-value

KPSS Test for Level Stationarity

data: Ts_NO2_by_states[, 1]
KPSS Level = 0.74203, Truncation lag parameter = 4, p-value = 0.01
dif = diff(Ts_NO2_by_states[,1],differences = 1)
kpss.test(dif)
Warning in kpss.test(dif): p-value greater than printed p-value

KPSS Test for Level Stationarity

data: dif
KPSS Level = 0.037004, Truncation lag parameter = 4, p-value = 0.1
autoplot(dif)
[image: timeserie_files/figure-docx/unnamed-chunk-10-1.png]
decom<-decompose(dif)
plot(decom,col = "blue")
[image: timeserie_files/figure-docx/unnamed-chunk-11-1.png]
The models : ARIMA provide a different approach to time-series predictions. Moving average and ARIMA models are the two most used approaches to time-series forecasting, provide complementary approaches to the problem. While moving average models are based on a description of the trend, ARIMA models try to describe the auto-correlations in the time series dataset.
fit<-auto.arima(dif, seasonal=TRUE)
fcast <- forecast(fit, h=8)
plot(fcast)
[image: timeserie_files/figure-docx/unnamed-chunk-13-1.png]
RMSE<-function(a,f){
 return (sqrt(mean(abs(a-f)^2)))
}
MAE<-function(a,f){
 return ((mean(abs(a-f))))
}
MAPE<-function(a,f){
 return(mean((a-f)/a))
}

library(nnfor)

#Split data into Train and Test Data SET
train <- window(Ts_NO2_by_states[,1], end = c(2014,12))
test <- window(Ts_NO2_by_states[,1], start = c(2015,1))
##Visualize Train Data Set
Fitting nnetar model
fit.nnetar <- nnetar(train)
fcst.nnetar <- forecast(fit.nnetar, h = 15)

Visualize model predictions
autoplot(test) +
 autolayer(fcst.nnetar, series = "nnetar Forecast", linetype = "dashed")
[image: timeserie_files/figure-docx/unnamed-chunk-14-1.png]
iNDICES
RMSE(test,fcst.nnetar$mean)
[1] 2325.164
MAE(test,fcst.nnetar$mean)
[1] 1828.709
MAPE(test,fcst.nnetar$mean)
[1] -0.4830614
Fitting MLP model
fit.elm <- elm(train,hd=c(2))
fcst.elm <- forecast(fit.elm, h = 15)

Visualize model predictions
autoplot(test) +
 autolayer(fcst.elm, series = "MLP Forecast", linetype = "dashed")
[image: timeserie_files/figure-docx/unnamed-chunk-15-1.png]
iNDICES
RMSE(test,fcst.elm$mean)
[1] 3537.731
MAE(test,fcst.elm$mean)
[1] 3306.26
MAPE(test,fcst.elm$mean)
[1] -0.9634995
Fitting nnetar model
fit.nnetar2 <- nnetar(train ,lambda = BoxCox.lambda(train),hd=c(1,2))
fcst.nnetar2 <- forecast(fit.nnetar2, h = 15)

Visualize model predictions
autoplot(test) +
 autolayer(fcst.nnetar2, series = "nnetar w/ BoxCox", linetype = "dashed")
[image: timeserie_files/figure-docx/unnamed-chunk-15-2.png]
iNDICES
RMSE(test,fcst.nnetar2$mean)
[1] 2317.744
MAE(test,fcst.nnetar2$mean)
[1] 1850.773
MAPE(test,fcst.nnetar2$mean)
[1] -0.4641197
Fitting MLP model
fit.mlp <- mlp(train,hd=c(1,2))
fcst.mlp <- forecast(fit.mlp, h = 15)

Visualize model predictions
autoplot(test) +
 autolayer(fcst.mlp, series = "MLP Forecast", linetype = "dashed")
[image: timeserie_files/figure-docx/unnamed-chunk-15-3.png]
iNDICES
RMSE(test,fcst.mlp$mean)
[1] 1927.245
MAE(test,fcst.mlp$mean)
[1] 1537.468
MAPE(test,fcst.mlp$mean)
[1] -0.1746287
Visualize model predictions
autoplot(train) +
 autolayer(fit.elm$fitted, series = "ELM Forecast") +
 autolayer(fit.mlp$fitted, series = "MLP Forecast") +
 autolayer(fit.nnetar2$fitted, series = "nnetar Forecast") +
 autolayer(fit.nnetar$fitted, series = "nnetar w/ BoxCox")
Warning: Removed 12 rows containing missing values (geom_path).

Warning: Removed 12 rows containing missing values (geom_path).
[image: timeserie_files/figure-docx/unnamed-chunk-16-1.png]

Mean Absolute Error (MAE): MAE measures the average magnitude of the errors in a set of predictions, without considering their direction. It’s the average over the test sample of the absolute differences between prediction and actual observation where all individual differences have equal weight.

[bookmark: 1d7f]Root mean squared error (RMSE): RMSE is a quadratic scoring rule that also measures the average magnitude of the error. It’s the square root of the average of squared differences between prediction and actual observation.

[bookmark: 01a8]Comparison
[bookmark: a0fe]Similarities: Both MAE and RMSE express average model prediction error in units of the variable of interest. Both metrics can range from 0 to ? and are indifferent to the direction of errors. They are negatively-oriented scores, which means lower values are better.

From the above model the best result is the result provided by Arima and elm neural network model.

fit.elm <- elm(train,hd=c(2))
fcst.elm <- forecast(fit.elm, h = 15)

Visualize model predictions
autoplot(test) +
 autolayer(fcst.elm, series = "MLP Forecast", linetype = "dashed")
[image: timeserie_files/figure-docx/unnamed-chunk-15-1.png]
iNDICES
RMSE(test,fcst.elm$mean)
[1] 3537.731
MAE(test,fcst.elm$mean)
[1] 3306.26
MAPE(test,fcst.elm$mean)
[1] -0.9634995
[bookmark: _GoBack]

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image1.png

image2.png

image3.png

